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Abstract 

Dynamical diffraction calculations have been made by 
use of the periodic-continuation assumption for the 
diffuse scattering in electron diffraction patterns and for 
electron microscope images of single split interstitials in 
gold crystals for thicknesses up to 200 /k in order to 
demonstrate the strong fluctuations of scattering with 
thickness. The diffuse scattering from distributions of 
defects in crystals, described in terms of correlation 
functions, can be written in terms of 'dynamical factors' 
for each type of individual defect. These dynamical 
factors multiply the same Fourier transforms of 
correlation functions as are used in kinematical theory 
to give the effect of dynamical scattering on the 
diffraction intensities. Calculations of dynamical fac- 
tors have been made by multi-slice dynamical diffrac- 
tion methods for unit changes in atomic scattering 
factors and for atom displacements in gold and 
aluminum crystals in [001] orientation for thicknesses 
up to 100 A. With increasing thickness the dynamical 
factors show rapidly reducing fluctuations with crystal 
thickness and become more nearly isotropic except for 
the effects of Kikuchi bands which are seen to develop. 

* This paper was presented, by invitation, at the ACA Dynamical 
Diffraction Symposium held at the University of Oklahoma, 22 
March 1978, honoring Paul P. Ewald on the occasion of his 
ninetieth birthday. 

1. Introduction 

Difficulties arise in the evaluation of electron scattering 
from defects and disorder in crystals because of the 
strong dynamical diffraction effects occurring even in 
very thin samples. While it is possible to write formal 
expressions for scattered amplitudes which are 
sufficiently accurate for the interpretation of any forsee- 
able experimental observations with fast electrons 
(energy greater than about 20 keV), it is not in general 
feasible to make accurate calculations of the dynamical 
scattering effects for both the sharp Bragg reflections 
and the continuous background of diffuse scattering in 
diffraction patterns. The incentive to find approximate 
methods to deal with particular experimental situations 
has been considerable because of the significance of 
electron scattering methods for the study of perturba- 
tions of the periodicity of crystals, but as the power of 
the experimental methods has been increased the 
requirements for better approximations in the 
theoretical modelling have also been increased. 

The use of a column approximation with, usually, a 
two-beam approximation and considerations limited to 
Bragg reflection amplitudes has served for much of the 
electron microscope study of dislocations and other 
extended crystal defects with medium-resolution im- 
aging (10 A or greater) for many years (Hirsch, Howie, 
Nicholson, Pashley & Whelan, 1965). Improved 
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approximations to overcome the limitations of the 
column approximation were evolved to account for 
observations with improved resolution, following 
Takagi (1962), but these still included only the Bragg 
reflections or else introduced the diffuse scattering 
amplitudes only in a severely limited form (see Howie 
& Basinski, 1968). 

For the resolutions in the range of 2 to 3 .A, or even 
better, now being achieved or being contemplated for 
the near future, none of these previously applied 
approximations can be adequate since scattering from 
the individual displaced atoms or from individual 
substitutional atoms or vacancies can contribute 
appreciably to the image. It is no longer sufficient to 
consider slowly varying strain fields as the origin of the 
image contrast. Under these circumstances the scatter- 
ing amplitudes must be calculated in terms of the 
scattering from all atoms considered individually. Some 
calculations along these lines have been made using a 
kinematical approximation for the diffuse scattering 
amplitudes (Krakow, 1976; Kuan & Sass, 1976). This 
is justifiable in the case of X-ray diffraction but is rarely 
so for electron diffraction. 

The only technique which takes dynamical diffrac- 
tion effects fully into account makes use of the periodic 
continuation approximation whereby the defect is 
assumed to be repeated regularly in two dimensions to 
form a two-dimensional superlattice for which the 
diffraction intensities and image contrast can be 
calculated by use of the multi-slice n-beam dynamical 
diffraction computer programs used in calculations for 
perfect crystals (see Cowley, 1975). Calculations have 
been made in this way by Fields & Cowley (1978) for 
split interstitials in f.c.c, metals, by Spence (1978) for 
dislocation cores and by Iijima & O'Keefe (1979) for 
defects in complex oxide phases. In this paper we 
present further calculations on the images and diffrac- 
tion intensities from split interstitials without relaxation, 
in order to illustrate more fully the effect on the 
observations of crystal thicknesses in the experi- 
mentally accessible range. 

The observation of diffuse scattering intensities in 
electron diffraction patterns has become an important 
technique for the detection and characterization of 
disorder and the statistics of defect arrays in crystals 
(Cowley, 1971). However, the method has been limited 
by the difficulty of assessing the nature and magnitude 
of dynamical diffraction effects on the diffuse 
scattering. 

The essential difficulty in the computer simulation of 
dynamical diffuse scattering from distributions of 
defects arises because one cannot assume the linear 
superposition of scattered waves from individual atoms 
which is the basis for the correlation function for- 
mulation of the kinematical approximation used for X- 
ray diffraction studies. The electron diffraction pattern 
amplitude is given by the Fourier transform of the wave 

function at the exit face of the crystal which is 
produced by the complicated multiple-scattering pro- 
cesses within the crystal. The elastic diffuse scattering 
intensity is a measure of the statistical correlations of 
deviations of this wave function from the periodic 
average component of the complex wave amplitude. In 
general this shows little relationship with, and is not 
directly derivable from, the statistics of the variations of 
deviations from the periodic, average potential or 
electron density distributions. As pointed out by 
Cowley & Murray (1968) it is not possible to describe 
the scattering, even from a thin layer using the phase- 
object approximation, in terms of the short-range-order 
coefficients which are sufficient to describe the 
kinematical diffraction intensities. Higher-order cor- 
relation coefficients must be invoked. 

In order to make some reasonable estimates of 
dynamical effects on diffuse scattering, Gjonnes (1966) 
introduced the method, used by Fisher (1965) and 
Gjonnes & Watanabe (1966), whereby each individual 
thin slice of a crystal, perpendicular to the incident 
beam, is assumed to produce a diffuse scattering 
distribution equivalent to that for the kinematical 
scattering from the average defect distribution. The 
calculation of diffuse scattering then proceeds by the 
'three-region' method as suggested in Fig. 1. For diffuse 
scattering in the nth slice of a crystal, it is assumed that 
in region 1, slices 1 to n - 1, the incident beam under- 
goes n-beam dynamical scattering by the average 
lattice. Only the Bragg reflections with reciprocal-lattice 
vectors h are considered, although an absorption 
coefficient may be included to allow for the energy 
losses by diffuse scattering. In region 2 each incident 
Bragg reflected beam gives rise to diffuse scattering. In 
region 3 each diffusely scattered beam with initial 
direction h 1 + A undergoes n-beam dynamical scatter- 
ing, interacting through Bragg reflections with all other 
scattered beams h i + A. The amplitudes ~,,(h + A) at 
the exit face are thus calculated and the observed 
intensity is then given by 

I(h + A) = ~ I Wn(h + a)l 2, (1) 
n 

Ill 

~(h) W(h + &) 

Fig. 1. Diagram suggesting the three-region scheme for dynamical 
diffuse calculations. 
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o r  

Z(h + A) =lY. e~(h + A)I~, (2) 
? 1  

depending on whether the scattering from all slices is 
considered to be independent and uncorrelated, as in 
(1), or is assumed to be correlated, as in (2). Inter- 
mediate degrees of correlation between slices are also 
possible (Cowley & Pogany, 1968). 

Calculation by this method assumes that the diffuse 
scattering is weak so that double diffuse scattering can 
be ignored. It does, however, include the full dynamical 
diffraction effects on the diffuse scattering due to the 
interactions of Bragg reflected beams. The method has 
been used effectively by Doyle (1969, 1971) for the 
calculation of thermal diffuse scattering and plasmon 
scattering in thin crystals. The thickness of crystal for 
which Doyle could make his calculations was strictly 
limited by the large amount of computing involved in 
evaluating (1) or (2) for a sufficient range of A values, 
even for one-dimensional cases. 

It is our purpose in the latter part of this paper to 
show that under certain well defined conditions it is 
possible to avoid the essential assumptions of this 
method of Gjonnes and express the dynamical diffuse 
scattering in terms of a 'dynamical factor' which 
multiplies the kinematical diffuse scattering intensity 
function. Calculations of the dynamical-factor func- 
tions can be made by use of the same assumptions of 
periodic continuation as in the case of individual defect 
diffraction patterns and images. 

2. Calculations for individual split interstitials 

Following the methods of Fields & Cowley (1978) 
further calculations have been made for the particular 
case of a [100] split interstitial in a gold crystal without 
relaxation of neighboring atoms with the incident beam 
in the [001] direction, in order to determine in more 
detail the nature of the variation of the image and the 
diffraction pattern with thickness and to provide a 
better basis for comparison with the calculations 
relevant to statistical distributions of defects. The 
accelerating voltage was taken as 1 MeV and the 
objective aperture, u o = 0.465/k-~, was chosen to just 
exclude the innermost Bragg reflections, namely the 
four 200-type reflections. 

In the first slice of crystal, split interstitials were 
assumed to occur at intervals of 8. I A in each direction 
so that the superlattice cell chosen was 2 × 2 perfect- 
crystal unit cells. This perturbed slice was followed by 
from 1 to 100 perfect-crystal slices each 2 A thick. To 
generate the phase grating approximation for the initial 
slice 2997 Fourier coefficients ('beams') were used and 
1369 beams were used for the iterative multi-slice 
calculations. 

For very thin crystals (less than about 8 A thick) the 
diffraction pattern resembles the kinematic, with diffuse 
scattering bands of intensity distribution 

I ( u ) =  [ 2  cos 2nu(a/4)--  112, (3) 

since the deviation from the perfect-crystal lattice is 
minus one atom at 0,0 and plus one atom at a/4 ,0  and 
- a / 4 , 0 ,  i.e. odd-order bands are strong and even-order 
bands are weak as in Fig. 2(a). The relative intensities 
of diffuse bands are reversed for a thickness of about 
20 A and reverse again for each subsequent 20 A 
increase of thickness. In Fig. 3(a) the intensities of 
diffuse scattering at the peaks of the zero- and first- 
order bands are plotted against thickness, showing their 
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(e) (f) 

Fig. 2. Computer print-out of intensities, on a logarithmic scale, for 
the electron diffraction pattern for a single [100] split interstitial, 
without relaxation, in a gold single crystal for thicknesses (a) 4 
A, (b) 12 A and (c) 120 A; electron energy 1 MeV, incident 
direction [001 ], h axis horizontal. (d), (e) and (f) are calculated 
images for the same thicknesses, with a defocus of-470 A and 
objective aperture size Uo = 0.49 A-~, C s = 1.8 mm. 
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slowly damped oscillations and the reversals of contrast 
up to a thickness of 200 A where the fluctuations of 
intensity with thickness are still of the order of 35%. 
For comparison, Fig. 3(b) shows the variation with 
thickness of the 000, 200 and 400 Bragg reflections. 
Fig. 2(b) shows a mapping of the diffuse scattering 
distribution for 12 ,/k thickness for which the even- 
ordered diffuse maxima are larger in the center of the 
pattern. With increasing thickness the alternation of 
strong and weak diffuse bands across the pattern 
becomes less distinct, particularly for the outer parts of 
the pattern. Fig. 2(c) is for a thickness of 120 /k for 
which the alternation of strong and weak bands is not 
so evident but the even-order bands are weaker. This 
effect is shown more quantitatively in Fig. 4 which 
compares the intensity distribution across the bands for 
thicknesses of 20 and 100 /k. The variation of the 
diffraction pattern with thickness is much less obvious 
for aluminum for which the kinematical form of the 
pattern, similar to Fig. 2(a), persists to much greater 
thicknesses, although the details of the intensity 
distribution are appreciably modified. 

The images of the split interstitial for thicknesses 4, 
12 and 120 ]~ are shown in Fig. 2(d), (e) and (f) .  The 
defocus was - 4 7 0 / k ,  close to the Scherzer optimum 
defocus, and the objective aperture, u o = 0.49 ]~-l, was 
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(b) 
Fig. 3. Variation with thickness of (a) the intensities at the maxima 

of the diffuse hands of Fig. 2(a) to (c) [h,k coordinates 0,1 for 
curve a, 2,1 for curve b and 6,1 for curve (c), relative to 
normal Au unit cell], and (b) the sharp Bragg reflections of Figs. 
2(a) to (c) (h,k coordinates 0,0 for curve a, 4,0 for curve b, 2,0 
for curve c). The scale is multiplied by the indicated factors for 
curves a and c. 

chosen just to exclude the inner Bragg reflections. In 
each case the positions of the added atoms are indicated 
clearly by dark spots. For some thicknesses, Fig. 2(d) 
and ( f ) ,  the position of the missing atom is indicated by 
a white spot but for other thicknesses, Fig. 2(e), this 
white spot is split or obscured. The main features of the 
image appear to fluctuate with thickness much less than 
those of the diffraction pattern. The image contrast 
defined by (/max - -  Imin)/Iave varied with thickness in the 
range of 15 to 25%. 

3. Diffuse scattering by distributions of defects 

We wish to treat the case of a short-range ordering of 
individual deviations from an average periodic crystal 
structure when the density of defects is high and the 
observed diffraction pattern comes from a spatial or 
time average from a large number of defects. We 
include, for example, thermal diffuse scattering and 
Huang scattering from correlated displacements of 
individual atoms from their lattice sites, but also short- 
range-order diffuse scattering from solid solutions of 
binary alloys, or more complicated systems, where the 
occupancy of a lattice site by a particular atomic 
species represents a deviation from the averaged site 
occupancy of the periodic average structure. Similarly 
we include point defects such as interstitials or 
vacancies, or clusters of these defects, with the 
associated atom displacements which constitute the 
'relaxation' of the surrounding structure. However, we 
adopt a new approach in which we do not include these 
recognized forms of individual defects as such. Instead 
we subdivide the defects into elementary 'unit' 
deviations from the periodic structure, distinguished by 
the form of their contributions to the diffuse scattering. 
Thus the subtraction of an atom to form a vacancy is 
described in terms of a multiple of a unit deviation 
which represents unit change in scattering amplitude 
(potential) of an atom, while the relaxation of the lattice 
is described by ascribing to each atom position an 

l ( u )  . 
x 1 0 - ~  f I 

t ' 
i i 

• .6 : 

i~'l t 

' " / '  i" ' ',v x,J"t Gi '; ~ i .  i ,, i ., i u 

~00 " F60 " 720 " ~ 0  ' ~ . 0  0 0  4 0  ~0 ~20 ~60 2o0 

Fig. 4. Variation of intensity across the diffraction pattern from 
split interstitial in gold (Fig. 2) for thicknesses 20 A (full line) and 
100 ]~ (dashed line). The vertical dashed lines represent the sharp 
Bragg reflections. Coordinates refer to the superlattice unit cell. 
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appropriate multiple of the unit change in potential 
corresponding to a small atom displacement in the 
appropriate direction. 

In order to clarify our approach we first rewrite the 
standard kinematical formulas for scattering from such 
a defect system in a form which is more appropriate for 
extension to dynamical scattering. In the kinematical 
approximation the potential distribution of the crystal, 
q~(r), can be written in terms of the periodic, average 
potential ~(r) and the non-periodic deviation from the 
average, Aq~(r): 

q~(r) = ~(r) + Aq~(r). (4) 

Then the scattered intensity can be written (see, for 
example, Cowley, 1975) as 

I(u) = IF(u)l 2 + IAF(u)l 2, (5) 

where u is the reciprocal-space vector and F(u) and 
AF(u) are the Fourier transforms of ~ and A~0 and the 
two terms on the right-hand side of (5) represent the 
sharp Bragg reflections and the diffuse scattering 
respectively. The average potential, ~b(r), may perhaps 
be understood as the inverse Fourier transform of F(u) 
= F ( u ) ~ h  fi(u--h), where h is a reciprocal-lattice 
vector. 

We now describe A~0 in terms of the various possible 
types of deviations from the average lattice, the type 
being indicated by the superscript n: 

A~o(r) = • X Cn Aq~ * f i ( r -  ri). 
n i 

For a substitution of one atom for another, or the 
occupancy of a site in a disordered alloy by one or 
another type of atom, A ~  would have the form ~ol(r) - 
~0z(r ) where ~0x and qh are the potential distributions for 
the types of atom. The constants C/' then may be 
positive or negative and may have any magnitude to 
represent the presence of any type of atom or a 
vacancy. For atom displacements e in the x direction, 
for example, A ~  will have the form ~0~(r) - ~0~(r - ex), 
which is approximately of the form e~0](r), where ~0~(r) 
represents the derivative with respect to x, and the 
constants C~' will depend on the magnitude and sign of 
the displacements and the nature of the atoms involved. 

The diffuse scattering intensity is then written 

I d ( U )  : I Z h P ' ( U )  12 

= Z Z Z Z c~, Z~(u).C 7 z~?'(u) 
mn k j  

x exp {2n/u.(rk-- rj)}. 

Putting r k - -  r j  = r i and taking each site as origin in turn 
we obtain the expression in terms of the correlation 

coefficients (Co m C r )  where the angle brackets represent 
a spatial averaging: 

Ia(u) = N E Z AOm(u) AO"(u) Z (Co m Ci'~ 
m n i 

x exp {2zdu. ri}. (8) 

If only one type of defect is present, as in the case of 
short-range order in binary-alloy solid solutions, with 
no size effect or thermal displacements of the atoms, 
this becomes 

Ia(u)=NIAOl(u) lZ  y (CoCi)exp{2zdri} ,  (9) 
i 

which is the standard expression (see Cowley, 1975, p. 
359). 

The main complication of dynamical scattering lies 
in the fact that instead of considering the three-dimen- 
sional Fourier transform of the potential distribution as 
in (4) we must consider the two-dimensional Fourier 
transform 7t(uv) of the wave function at the exit face of 
the crystal 9'(xy); 

l ( u , v ) =  L q'(uv)D 2 + IA~'(uv)l ~. (10) 

The contribution of a deviation from the average 
structure at a crystal lattice site to the deviation 
A W(u,v) depends not only on the nature and magnitude 
of the deviation but also on its position within the 
crystal, especially in the incident-beam direction, 

(6) because of the strong dynamical diffraction effects 
undergone by the scattered wave as it progresses 
through the crystal. This contribution is therefore 
characterized by an index t to denote depth in the 
crystal in the beam direction or, in the language of the 
multi-slice method of computation, by a slice number. 

A small deviation from the average potential distribu- 
tion of type n at site i in slice t of the crystal may be 
assumed to give a deviation A V"tn't(uv) in the Fourier 
transform of the wave function at the exit face of the 
crystal. A deviation which is C i times as large will give 
a deviation C i A ~ ' t (uv )  only if the total deviation from 
the averaged potential is sufficiently small, i.e. if a 
kinematical approximation can be used for the scatter- 
ing from the individual defect. For the moment we 
assume this case of small local deviations from the 
average potential, but will consider the breakdown of 
this approximation at a later stage. 

If we also make the assumption that deviations from 
the average structure are independent in different slices 
of the crystal, the diffracted intensity can be written, by 
analogy with (7), as 

(7) 
Id(U'V)= Z Z Z Z Z C~ 't C7 't A~k't(uz)) A~lT't*(ul)) 

t m n  k j  

x exp {2ni[u(x k -  x i) + v(yk--Yj)]}. (11) 
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On the assumption that all appreciable correlation 
coefficients (C~,tC~ t) are confined to one slice 
thickness we may express this in terms of general 
correlation coefficients (CgC} ~) and use three- 
dimensional vectors u,r. Because the scattering is given 
by a two-dimensional section of a three-dimensional 
distribution, we can write it in terms of these three- 
dimensional vectors, in analogy with (9): 

Ia(uV) = N Z Z Z A ~tn't(u) z~ ~Im,t" (U) 
t m n 

x Z (C~ C m) exp {2~/u.ri} 
i 

=g~m~n [~t/l~'t(u),/l~Jm't*(u)] 

x Z (Cg C ? )  exp {2Nu. ri}. (12) 
i 

If there is only one type of defect present this reduces to 

For two types of defect, three dynamical factors will be 
needed for each crystal orientation and thickness, and 
so on. 

For atom displacements, since the deviation from the 
average structure does not have the symmetry of the 
average structure, the dynamical factor will, in general, 
be different for each direction of displacement perpen- 
dicular to the incident beam. However, to a good 
approximation it will usually be possible to express any 
displacement perpendicular to the incident beam in 
terms of a sum of displacements in two perpendicular 
directions. For crystals having fourfold axes in the 
incident-beam direction the two dynamical factors then 
needed will be identical apart from a 90 ° rotation. It 
will be necessary to calculate only two dynamical 
factors: one for the first two terms of (14) and one for 
the third term. This type of aproximation will be 
particularly good for reasonably thick crystals since, as 
we will show later, the dynamical factors tend to 
become increasingly isotropic with increasing crystal 
thickness. 

Ia(u) = N Z IAga(u)12.Z (C O C~)exp{2~zi(u.ri)}. (13) 
t i 

Here the summation over t takes the place of IA~(U)I 2 
in (9) and may be regarded as a 'squared dynamical 
structure factor', or 'dynamical factor' for short, which 
multiplies the second term which is identical with that in 
the kinematical case. 

For more than one type of defect, the expression 
becomes more complicated. For example, for types 1 
and 2 present (e.g. atomic replacements and atomic 
displacements in one direction), equation (12) becomes 

Ia(u) = Z IA~l't(u) [2. Z (Co ~ C])  exp {2z~iu.rt} 
t i 

+ Z IAq~'t(u)12"Z (Co 2 C~) exp {2zdu.ri} 
t i 

+ Z [Z~I't(u)" Af~2't*(u) + C.C.] 
t 

x Z (Co 1C~) exp {2m'u.ri}. (14/ 
i 

Thus with only one sort of defect present it is 
necessary to calculate only one dynamical factor which 
then multiplies the kinematical scattering expression 
based on the correlation coefficients or short-range- 
order parameters of the defect arrangement. This 
dynamical factor will depend on crystal thickness and 
orientation but will, in general, be a slowly varying 
function. It needs to be calculated only once to allow 
the diffuse scattering distribution to be calculated for 
any assumptions as to the degree or extent of short- 
range ordering for which the initial assumptions apply. 

4. The calculation of  dynamical factors 

In order to investigate the feasibility of calculating 
dynamical factors and to gain an impression of the 
form of these functions and the extent to which they 
vary with crystal thickness and other parameters, we 
have made some calculations for the relatively simple 
cases of the face-centered cubic metals aluminum and 
gold. The same assumptions of periodic continuation 
could be made as in the case of the calculations of 
diffuse scattering from individual defects. For each type 
of defect the function A T"(u) is calculated for a small 
deviation from the average lattice at one atomic site in 
the slice number t in the crystal and the intensity 
distribution fA~Ut(u)l z is found. Then the dynamical 
factor is given by summing for all t up to the maximum 
corresponding to the crystal thickness. 

The superlattice unit cell chosen in each case had 
twice the dimensions of the perfect-crystal unit cell. To 
generate the phase grating for an individual slice 2997 
beams were used, and 529 beams were used in the 
iterative multi-slice calculation with a slice thickness of 
4 A. For the four sets of calculations, giving dynamical 
factors for thicknesses of up to 100 :k for vacancies and 
for atom displacements in gold and aluminum, the total 
computing time on a Univac 1110 computer was 8 h. 
For the vacancy calculations, the unit defect was taken 
to be 0.1 atoms of gold or 1.0 atoms of aluminum. For 
the displacement calculations the unit defect corre- 
sponded to the shifting of one atom by 0-05 A. 

Computer print-out maps of the dynamical factors 
are shown in Figs. 5 to 8. A logarithmic scale has been 
used. The regularly spaced black dots represent the 
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positions of the sharp Bragg reflections, 2h,2k,0 of the 
unperturbed structures. Contour lines of diffuse scatter- 
ing intensity have been drawn to emphasize the form of 
the distributions. More quantitative representations of 
sections of these maps are given by plots of intensity 
against distance across the middle of the maps in Figs. 
9 to 12.* In these plots the vertical lines represent the 
sharp Bragg reflections. In each case diffuse intensity 
curves are given for two thicknesses: (a) 12 A and (b) 
40 A. For the latter curve in each case the vertical scale 
has been adjusted by multiplying by the factor 
indicated. 

For the vacancy in aluminum, Figs. 5 and 9,* the 
diffuse scattering retains the circular symmetry of the 
kinematical scattering case and has an almost mono- 
tonic fall-off with scattering angle. For increasing 
thickness the distribution becomes broader with only 
minor changes in shape. 

In the case of gold (Figs. 6 and 10) the stronger 
dynamical scattering effects are evident. Even for 12 A 
thickness [Fig. 6(a) and Fig. 10, curve (a)] there is an 
inversion of the kinematical distribution for small 
scattering angles although the distribution remains 
roughly isotropic. For greater thicknesses, as in Fig. 

* Figs. 9, 13 and 15 have been deposited with the British Library 
Lending Division as Supplementary Publication No. SUP 33901 (4 
pp.). Copies may be obtained through The Executive Secretary, * See previous footnote. 
International Union of Crystallography, 5 Abbey Square, Chester 
CH 1 2HU, England. . ~ 
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6(b) for 84 A and Fig. 6(c) for 100 A, strong bands of 
diffuse scattering develop along the [100] and [010] 
directions with weaker bands along [ 110]. These are the 
well known Kikuchi-band or 'channelling' effects. 

For unit displacements the dynamical factor plots for 
thin crystals have the typical double-maximum ap- 
pearance, as for kinematical scattering, with weak 
scattering along a line perpendicular to the displace- 
ment [Figs. 7(a) and 11 for A1; Figs. 8(a) and 12 for 
Au]. However, even for 12 A thickness the scattering is 
asymmetric, especially for gold. For an asymmetric 
displacement, the center of symmetry required for 
kinematical scattering no longer appears. For greater 
thicknesses the dynamical factors rapidly become more 
isotropic with a reduction or even elimination of the 
trough perpendicular to the displacement direction, as 
seen by Figs. 7(b) for aluminum and 8(b) for gold 
calculated for 84 A and by the curves (b) in Figs. 11 
and 12 calculated for 40 A thickness. 

For aluminum the variation of the dynamical factor 
with thickness is smooth and monotonic as illustrated 
in Figs. 13" and 15" which show the variations for the 
points h,k = 3,0 (curve a) and 10,0 (curve b) where 
these coordinates refer to the superlattice unit cell. For 
gold, as shown by Figs. 14 and 16, there are initially 
strong fluctuations of the dynamical factor with 

~ ' 

(b) 

(a) (b) 

Fig. 5. Computer print-out map of dynamical factor for unit 
vacancy defects in aluminum crystal, [001] orientation; 
logarithmic scale, diffuse intensities contoured, Bragg reflections 
indicated by black dots. Thicknesses (a) 12/k and (b) 84 A. 

. . . . .  

Fig. 7. As for Fig. 5 but for unit displacement defects in aluminum. 
Thicknesses (a) 12 A and (b) 84 A. 

. . . . . . . . . .  : ~  : : S  

. . .  

(a) (b) (c) 

Fig. 6. As for Fig. 5 but for gold crystal. Thicknesses (a) 12 A, (b) 
84 A and (c) 100 A. 

(a) (b) 

Fig. 8. As for Fig. 7 but for gold crystal. Thicknesses (a) 12 A and 
(b) 84 A. 
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thickness, almost as large as those for a single inter- 
stitial (Fig. 3a), but these fluctuations are rapidly 
damped and for thicknesses greater than about 75 A 
the variation with thickness appears to become nearly 
monotonic. 

5. Conclusions 

It is evident from the results we have presented that the 
dynamical scattering effects on diffuse electron scatter- 
ing are strong, especially for heavy-atom materials, 
even at high voltages. The particular orientation 
chosen, with the incident beam parallel to the cubic 
unit-cell axis, is one of strong n-beam dynamical inter- 
action but, as shown by Fig. 3(b), cannot be classed 
with the cases of very strong interaction in which the 
incident beam loses most of its intensity in its first 
oscillation for thicknesses of less than 50 A (see, for 

120 
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Fig. 10. Profile of intensity distribution across dynamical factor for 
vacancy defects in gold (cf Fig. 6). Thicknesses (a) 12 A and (b) 
40 A. The vertical lines represent the sharp Bragg reflection 
positions. The vertical scale on curve (b) is multiplied by a factor 
of 8. Coordinates refer to the superlattice unit cell. 

example, Fejes, Iijima & Cowley, 1973). The 
dynamical effects would be stronger if, for example, the 
incident beam were tilted to satisfy the Bragg condition 
for the 200, 020 and 220 refleotions. The axial 
orientation is appropriate, however, in that it is the 
optimum for the imaging of defects and it is also the 
orientation most commonly chosen for observing 
diffuse scattering effects. 

For individual interstitials in gold the intensities of 
the diffuse bands oscillate rapidly with thickness and 
the oscillations persist into the thickness region of 
experimental significance. Single-crystal gold films a 
few hundred fingstr6ms thick are readily made but it is 
very difficult to prepare films less than 100 A thick. 

Usually, experimental conditions will be such as to 
reduce the effects of the thickness dependence. 
Variations of crystal thickness due to surface steps will 
tend to smooth out the intensity oscillations. Also, in 
order to obtain diffraction from a region small enough 
to allow the diffraction effects of a single interstitial to 
be seen, a convergent incident beam will be required, as 
in a scanning transmission electron microscope, and the 
integration of intensities over the incident-beam direc- 
tion will smooth out the thickness fluctuations. 

120 80  4 0  00  4 0  80  120 U 

Fig. 12. Profile of dynamical factor for unit displacements in gold. 
Thicknesses (a) 12 A and (b) 40 A (of. Fig. 8). 
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Fig. 11. Profile of dynamical factor for unit displacements in 
aluminum. Thicknesses (a) 12 A and (b) 40 A (cf. Fig. 7). 
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Fig. 14. Variation with thickness of dynamical factor per unit 
vacancies in gold at the points with h,k coordinates, relative to 
the superlattice unit cell, of 3,0 for curve (a) and 10,0 for curve 
(b) (cf. Figs. 6 and 10). 
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Images of split interstitials are much less dependent 
on crystal thickness than the diffraction pattern 
intensities under the conditions of our calculations. 
Although the image contrast may fluctuate, the form of 
the perturbation of the crystal remains recognizable at 
all thicknesses up to the range which is experimentally 
accessible. This result offers encouragement to the 
efforts to attain the necessary resolution capability with 
high-voltage electron microscopes. 

Our model of a split interstitial in gold without lattice 
relaxation is not, of course, intended to represent a 
situation of immediate practical significance. It was 
chosen for the clarity of the images and diffraction 
effects and for computational convenience, to represent 
an extreme case of strong dynamical scattering effects. 

The idea of using a 'dynamical factor' to represent 
the effect of dynamical scattering on diffuse intensity 
distributions in diffraction patterns was used by Fisher 
(1965). Having calculated the dynamical scattering 
intensities for a copper-gold alloy having an assumed 
degree of short-range ordering, he showed that the 
dynamical factor defined by the ratio Idyn/Iki  n w a s  a 
smoothly varying function so that the form of the 
diffuse scattering peaks was not seriously distorted by 
dynamical effects. 

We have used a somewhat different concept. The 
'dynamical factor' which we have defined is the 
function to be used in place of the kinematical 
scattering amplitude expression which multiplies the 
'unitary' diffuse scattering expression, the second parts 
of the right-hand sides of equations (9) or (13). Our 
dynamical factors can thus be calculated in advance for 
a particular crystal of given orientation and thickness 
(or range of orientations and thicknesses) and can then 
be applied to obtain the diffuse scattering for any model 
for the defect correlations. The amount of computation 
required to deduce the dynamical factors with any 
accuracy is obviously quite large but is much less than 
would be required if the full dynamical calculation were 
made separately for each model of the defect cor- 
relation. Also, since to calculate dynamical factors it is 
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Fig. 16. Variation with thickness of dynamical factor for unit 
displacements in gold at points (a) 3,0 and (b) 10,0 (cf. Figs. 8 
and 12). 

necessary to consider only single, highly localized 
defects, the dimensions of the superlattice cells used in 
the periodic continuation calculations can be relatively 
small, of the order of two or three perfect-crystal unit- 
cell periodicities. To calculate intensities for a particular 
model involving defect correlations the superlattice 
unit-cell dimensions would have to be much greater 
than the range of the correlations and so would usually 
require the inclusion of a much greater number of 
diffracted beams. 

An important limitation of our treatment is the 
assumption of kinematical scattering by the deviation 
from the perfect-crystal potential distribution in each 
slice. This approximation will break down to a signifi- 
cant extent for vacancies in heavy-atom materials such 
as gold or even for short-range ordering with large 
differences in the scattering amplitudes of the atoms, as 
in the case of copper-gold alloys (Cowley & Murray, 
1968). A first-order correction to this approximation 
can be made at the expense of further complication of 
the computing. Thus, if a phase-object approximation is 
made, the scattering by a deviation in slice t of type n 
may be written (Cowley, 1975): 

, 7  exp {--iota @'~,t(xy) } = ,~(uv) 

-iaaq,?.t(uv)- ½ 0 " 2 { A t ~ / ' t ( u v )  * A t ~ 7 ' t ( / . / v ) }  + . . . ,  (15) 

so that AW~,t(uv) in (11) is replaced by 

AW~,t, l(uv) - Ag.'~,.t,Z(uv) + . . . .  (16) 

where A~, , t , 2 (uv )  is the change in the Fourier trans- 
form of the exit wave function derived from the second- 
order term of (15). 

For a single defect type the dynamical factor 
summation in (13) is then replaced to a first approxi- 
mation by 

Z { [ A ~ / ' 2 ( u )  12 -t- [ / [ ~ g t ' 2 ( z / ) [ 2  

t 

+ 2 R e [ A ~ t J ( u ) . d ~ t , 2 * ( u ) ] } .  (17) 

Thus this refinement requires that the number of multi- 
slice calculations be doubled. The result would be some 
modification of the forms of the dynamical factors but 
no essential change in the general conclusions to be 
drawn. 

From the very limited selection from our calculated 
results, presented here, it is clear that the summing over 
thickness of the diffuse intensities gives a considerable 
smoothing of the dynamical factor. The fluctuations 
with thickness are damped much more rapidly than in 
the case of the scattering from a single defect. When the 
kinematical diffuse scattering from the unit defect is 
strongly anisotropic, as in the case of atomic displace- 
ments, the dynamical factor rapidly becomes more 
isotropic with increasing thickness. For single crystals 
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in the thickness range normally used for electron 
diffraction observations it appears likely that the 
dynamical factors will vary smoothly with thickness 
and will be very nearly isotropic except for Kikuchi- 
band effects. It should therefore be a good approxi- 
mation to assume, as suggested earlier, that an atom 
displacement in any direction can be approximated by 
the sum of displacements in two perpendicular direc- 
tions, or of displacements along any two near- 
orthogonal directions which seem appropriate. 

The appearance of the strong Kikuchi-band or 
channelling patterns for gold (Fig. 6) is consistent with 
observational experience. In many cases the con- 
figuration of bands appears to modulate the diffuse 
scattering distribution due to defects or thermal 
vibrations without any distortion or masking of its 
characteristic features. The positions of the Kikuchi 
bands are strongly dependent on crystal orientation. 
Very thin crystals are commonly bent so that the 
Kikuchi bands are smeared out and are rarely seen. 

We may conclude that for many cases of simple 
defect types the effects of dynamical scattering will be 
qualitatively represented by a modulation of the 
kinematical diffuse scattering distribution with a slowly 
varying dynamical factor function which is reasonably 
isotropic except for Kikuchi-band effects. For quantita- 
tive interpretation of the diffuse scattering, accurate 
calculation of the dynamical factor is possible, but 
laborious with present methods. 

It must be emphasized that the dynamical factors for 
different types of unit defects will be widely and qualita- 
tively different. Thus, as suggested earlier on the basis 
of a simple phase-object model (Cowley, 1965), 
dynamical effects are very different for displacement 
and replacement defects. This was confirmed by the 
observations and calculations of P. M. J. Fisher 
(private communication) who showed that, relative to 
the diffuse scattering due to short-range-order atom 
replacements in Cu-Au alloys, the asymmetric 
contributions to the diffuse peaks due to size-effect 
displacements are strongly suppressed when the inci- 
dent beam is in a principal orientation. This difference 
has appeared also in our calculations for vacancies and 
displacements. 

For a more complicated form of crystal defect, with 
correlations between atom site occupancies and atom 
displacements, as in short-range ordering with size 
effects or vacancies with lattice relaxation, the contribu- 
tions of the final cross-product terms of (14) and similar 

terms, may add further complication. We have not, as 
yet, carried out the computations needed to suggest the 
form of these terms. However it is clear that these may 
add to the deviations from the form of the kinematical 
diffuse scattering due to the differences in the 
dynamical factors for the various types of unit defects 
considered separately. Obviously caution is indicated in 
the interpretation of diffuse scattering in electron 
diffraction patterns from non-trivial forms of defects 
until more complete calculations have provided detailed 
indications of the types of complications which may 
occur in the dynamical scattering effects. 

This work was supported by NSF Grant DMR76- 
06108. 
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